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ABSTRACT

Tensile, creep, thermal expansion, and modulus of elasticity data

were determined for hot-pressed zirconium carbide. The material was

relatively impure, containing 1 to 2% nitrogen and 1 to 2% free car-

bon. Tensile and creep properties, which were measured to 2600°C,

indicated that above 2100°C the strength is 2,000 psi or lower and the

elongation is 40% or greater, thus signifying little structural usefulness.

It is proposed that results were influenced by the presence of impurity

at the grain boundaries. Mean coefficient of thermal expansion of this

zirconium carbide varied from 5.6 × 10-' °C-_ (for 25 to 400°C) to

7.6 × 10 -_ °C -_ (for 25 to 2800°C). Room-temperature modulus-of-

elasticity values averaging 51.6 × 10' psi were obtained by dynamic

methods.

I. INTRODUCTION

During recent years, there has been a marked tendency

to design systems for operation at ever-increasing tem-

peratures. This tendency has severely limited the number
of usable materials and has intensified the search for new

and better materials. The refractory metal carbides have

been considered for such uses because they have the

highest known melting points (approximately 4000"C).
Such carbides have been considered for reactors, rocket

nozzles, heat shields, and thermionic emitters.

In spite of the interest in these materials, very little

basic information on their mechanical and thermal prop-
erties at the temperatures of interest has been reported.

Occasional mechanical property tests have been con-
ducted, and some thermal properties data are available

(Ref. 1 and 2). However, the results are not in good

agreement, and the materials tested were not well char-
acterized, which would contribute to this lack of agree-

ment among various investigators. A very definite

practical interest exists in the physical properties of
refractory metal carbides.

From a fundamental standpoint, the carbides are an

interesting class of materials because of their chemical

and physical nature. Chemically, on the basis of elec-
tronic conductivity and metallic luster, they are consid-

ered to be metallically bonded materials. However, their

mechanical properties are considerably different from

those of the metals in that they apparently exhibit brittle

failure at all temperatures. The nature of the brittleness

has not been determined; it may be a result of the funda-
mental structure of the material or principally the effect

of contamination. It is conceivable that a transition in

the mode of failure of carbides might exist as is the case

with metals, but this apparently has not been determined.

This program was undertaken in the hope of providing

(1) fundamental information concerning the properties of

a relatively little understood class of materials and (2)

engineering information that might be of value in the

design of future high-temperature structures. Since little
data were available on the refractory metal carbides, it

would be beneficial to obtain information as quickly as

possible. Therefore, tests on commercial materials were

conducted in test equipment of known capabilities. Using

this approach, results could be obtained without resort-

hag to extensive materials and equipment development

programs. Concurrently, information would be gained

for proper planning of future fabrication programs and

for the design of improved test facilities. Zirconium car-

bide, the material selected for evaluation, was chosen on

the basis of cost, availability, and stability. It was felt

that the zirconium carbide would be compatible with the

test environments available, at least to the anticipated

test temperatures.
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II. MATERIALS, FABRICATION, AND PURIFICATION

All of the zirconium carbide tested came from the

same lot of powder. Most of the test specimen blanks

were hot-pressed by the vendor. (The hot-pressing pa-
rameters were not available.) Specimens were also hot-

pressed at the Jet Propulsion Laboratory (JPL). The

specimen characteristics for typical vendor- and JPL-
fabricated pieces and for the raw powder are given in

Table 1. The techniques employed for these analyses
were (1) micro-Kjeldahl for the nitrogen, (2) vacuum

fusion for the oxygen, (3) spectrographic analysis for the
metaUics, (4) acid separation for free carbon, and (5)
combustion for total carbon. It should be noted that since

the accuracy of the analyses for nitrogen and oxygen in

zirconium carbide is subject to question,' the values indi-

Wrivate communication with Melvin C. Bowman, Croup Leader,

CMB 3, Los AIamos Scientific Laboratory, Los Alamos, New

Mexico.

cared should be taken only as the best indications of the

true values rather than as absolutely correct values.

As may be seen in Table 1, the analyses of the vendor-

fabricated specimens show high purity for metallics (ex-
cept for the commonly associated hafnium) but consid-
erabh contamination for nonmetallics. These samples

contained a relatively large quantity of nitrogen and
considerable free carbon. The existence of nitrogen with-
in the lattice of zirconium carbide is assured since zir-

conium nitride and carbide are isomorphous and form a
continuous solid solution. Oxygen can substitute for
carbon in the carbide lat_ce to some unknown extent,

although in large quantities it wiU form a second phase.

With the vendor-fabricated specimens it is believed

that nitrogen was dissolved into the carbide lattice dur-
ing the hot-pressing procedure because of an insuffi-

Table 1. Zirconium carbide material composition and density

As-recaivwl Typical as-recaivsd camrntrcial Typical JPt-fabricated

powder test spsclmens test specimens
CharadOdstics

Impurity, s vet. %

Co

5i

Fo

AI

N!

5n

11

V

Cr

Hf

Ctre,

Ce¢,mt,b

N_

Os

Density, g/cm s

0.001 to 0.01

0.001 to 0.01

<0.0oI

<o.ool

0.001 to 0.01

0.001 to 0.01

0.01 to 0.1

0.001 to 0.01

<0.001

1.

0.79

10.87

0.24

0.044

Not determined

0.001 to 0.01

<0.001

0.01 to 0.1

<o.ooi

0.001 to 0.01

<o.ool

0.01 to 0.1

<o.ool

0,001 to 0.01

1.

1.58 to 2.49

8.81 to 9.41

1.06 to 2.0g

0.21 to 0.28

6.191o6.50

<_0.001

0,001 to 0.01

0,1 to0.J

0.0O1 to 0.01

0.001 to 0.01

<0,OOl

<0.001

0.eel to 0,01

0.001 to 0.01

1.

0.85 to 1.0

10.6

0.28 to 0.$5

0.22 to 0.56

6.53

• Othm observed wars loss than 0.001 wt. %.

bCcomb m combinedcarbon.

2
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ciently protective atmosphere. This nitrogen caused

precipitation of an equivalent amount of carbon which
then appeared as free carbon at the grain boundaries

(see Fig. 1). Removal of the nitrogen impurity was at-

tempted by annealing the specimens for 1 hr at 2150"C

in an argon atmosphere containing carbon from furnace
hardware. However, this purification technique was only

partly successful, as may be seen by the results of the
chemical analyses given in Table 2.

The x-ray diffraction pattern of all of the zirconium
carbide used in these tests showed only face-centered

cubic zirconium carbide with no other phases resolved;

this pattern agreed completely with that published (Ref.

3). The lattice parameter was determined by a standard
least-squares analysis (Ref. 4). The lattice parameter for
zirconium nitride is reported to be 4.56 (Ref. 5) and that

for zirconium carbide, 4.702. z The reported value for

zirconium carbide may be in error because the quantity

of oxygen reported in the sample was not accurately
known. The effect of this oxygen is to reduce the lattice

parameter, but the magnitude of the change is not
known,

The effect of annealing, under the conditions pre-

viously described, on the x-ray diffraction lattice param-
eter of the zirconium carbide was significant, but not

fully explained. As shown in Table 2, a sizable increase

in the lattice parameter was noted after annealing, but

'Private communication with Melvin C. Bowman.

I . so,, !

Fig. 1. Typical microstructure of vendor hot-pressed
zirconium carbide as received showing free carbon

at grain boundaries. Void content was small (< I%).

Specimen was polished and etched with 50 parts
conc. HNOs: 50 parts H20:1 part HF

since this increase could be related to changes in the

carbon, oxygen, or nitrogen content, no specific correla-

tion was made. With higher temperature annealing, the
lattice constant for any particular specimen remained

essentially unchanged, although chemical analysis indi-

cated some changes in composition (see Table 2). These
inconsistencies may have resulted from the uncertainty

in chemical analysis. Because the highest annealing

temperature employed (2700"C) was above any test tern-

Table 2. Effect of heat treatment on zirconium carbide

Cammerclal specimen 1 Commercial specimeo 49 JPL ipectm4ms 51, 52, 54

Characteristics 1 hr at 21500C 1 kr at 2500"C I kr ot 2700°C I krat

As received in carbonaceous As received in carbonaceous in carbonaceous As pfqmed 22S0°C in

argan mlqm urgen 10"l vac

Impurity, wt. %

Ccomb

Ctree

Ns

OI

O

Lattice parameter, A

Grain size, #

Knoop hardness number

far 0.2 Kg load

9.9

1.6

1.06

0.21

4.6782

4.7

800

9.7

1.4

0.94

0.18

4.6911

6.2

1200

9.07

2.03

2.0e

0.27

4.6764

5.4

9OO

9.85

1.115

1.97

O.Oe

4.6825

9,4

1200

9.97

1.41

1.32

O.O7

4.6832

10.5

1300

10.67

0.85

0.32

0.56

4.6941

3.11

1600

10.14

1.111

0.211

0,017

4.6936

12.9

1400

3
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peratures used in this investigation, it must be concluded
that all of the vendor hot-pressed zirconium carbide

speeimIFs used contained I to 2% nitrogen, 1 to 2% free
carbon;and about 0.2% oxygen.

Other physical measurements on the zirconium carbide

material correlated with the indicated compositional
changes. The increase in Knoop hardness after annealing

(see Table 2) was a result of a decrease in nitrogen con-
tent in the earbide--nitride solid solution. The grain size

increased slightly during annealing. Those grain sizes
indicated in Table 2 were determined by the line-count

method (Ref. 6).

The zirconium carbide specimens produced at JPL

were hot-pressed in graphite dies under flowing argon
at 2000"C and 6,000 psi for 30 rain. As may be seen in
Tables 1 and 2, the chemical analysis results, the lattice

parameter, and the Knoop hardness all indicated some
contamination from oxygen and nitrogen as a result of

hot-pressing. The flowing argon atmosphere was appar-
ently helpful but not entirely sufficient. As also shown

in Table 1, iron was introduced into the specimens fab-

ricated at JPL. It was subsequently determined that this

contamination could be eliminated by acid leaching of
the dies with HC1.

The purification of the JPL hot-pressed material was

attempted by annealing in a liquid-nitrogen cold-trapped
vacuum system. The limiting conditions are indicated in

Table 2. Severe outgassing was encountered at 1400 to
1700"C, and a total weight loss of 0.5_ was evident at

1700"C. Since the vapor pressures of zirconium carbide
and graphite are <10 -_ mm Hg (Ref. 7) at these tem-

peratures, the losses should have been a reflection of
purification. The chemical analysis, if assumed to be

relatively correct, appeared to support this, indicating a

0.04% loss of nitrogen and a 0.559 loss of oxygen.

Although these annealing techniques resulted in some
purification of the zirconium carbide, the resulting ma-
terial was still impure. Most test specimens in this inves-

tigation were heated to 2150"C for 1 hr and this fact is

noted in appropriate test specimen designation.

4
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III. TESTING PROGRAMS

Because several different mechanical and thermal

measurements were made on the hot-pressed zirconium
carbide material, each test program will be reported as

a unit. Included for each test program are the technique

and equipment used, specific specimen configuration,

results, and interpretation. The conclusions in Part IV

apply to all of the programs.

A. Tension Program

The tension properties of zirconium carbide were
measured in equipment originally designed and con-

structed at JPL for use with graphite (Ref. 8) in a test
environment of carbonaceous helium. The specimen

grips were graphite and were at the same temperature
as the specimen. The configuration of the test specimen
is shown in Fig. 2. Note the compound radius employed
to reduce stress concentrations to less than 2_. The

specimens were machined to this configuration by means
of a combination of spark discharge and ultrasonic tech-

nique. Test loads were applied by a motor-driven screw,
and stress was measured by a standard load cell. The

deformation of the specimen, as indicated by relative

motion of the grips, was measured by mechanical trans-
mission to the exterior of the furnace where a transducer

in the form of a strain gauge was used to produce an

electrical signal. In this Report, the total deformation, as
determined by the extensometer, will be referred to as
recorded strain.

1.500 ± 0001 R
1.188 R REF

o.ool J"/,t_o.312|± o ool R /-INDENTS 0.15

-- _o +-_:_o

L.. -_o._ t_- , I_ICKNESSOJSO*-g.N
,aP-- IJ I--.--_ I I .........

= 29_-_----.l ALLO,.ENSiONS
- =:_:_r "-__ IN INCHES

Fig. 2. Configuration of zirconium carbide tension

or creep specimen

The distribution of the deformation within the speci-

men was accurately determined by the measurement of
the location of 25-_ wide microhardness indents on each

side of the specimen before and after testing (see Fig. 2).

From this technique, it was determined that the defor-
mation in the gauge length was equal to 74 _ 10% of
the recorded strain over the entire range of deformation.

This deformation within the gauge length will be re-

ferred to as gauge length strain. Both the consistency of

the ratio of gauge length strain to recorded strain and
the actual measurement of the disb'ibution of deforma-

tion indicated that this deformation was uniform with

no localized necking. The appearance of fracture was
entirely of a brittle nature even after the large elonga-

tions at the highest temperatures employed for these
tests. Correlation of the various strain measurements, as

determined by the extensometer system, indents, and
external dimensions, was generally excellent with varia-

tions being less than 5_.

The data were obtained in the form of curves for
stress vs. time and for recorded strain vs. time. These

were replotted to yield stress vs. gauge length strain

curves. The stress vs. gauge length strain curves for tests
conducted above 2200"C are typified by that shown in

Fig. 3. The stress vs. gauge length strain curves at
1600"C are typified by Fig. 4. Those taken at 2000 and

2200"C lie between these two extremes. Figure 4 shows

-_ I I I I I I

_. _'-CORRECTED FOR EXTERNAL
IN AREA

. "_ REDUCTION

STRAIN RATE 500 x 10 -5 see -I [ 1

C I / I z l
I0 20 3O

GAUGE LENGTH STRAIN, percent

Fig. 3. Stress vs. gauge length strain for hot-pressed
zirconium carbide tested at 2t_0°C

5
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a large stress at zero strain because of inherent insensi-

tivity to small strains in the strain-measuring systems.

The results of the tension tests are shown in Table 3,

and they are expressed as a function of various test pa-

rameters in Fig. 5, 6, and 7. In all of these instances, the

strain rate listed is based on original gauge length. In

general, the strength of the zirconium carbide was quite

low at temperatures above 2200"C, and gauge length

elongation reached 50% or greater at the highest tem-

perature. The nature of the deformation observed was

evident from the mi_ostructure shown in Fig. 8. Note

J

{n

b-
¢n

I I I I I

STRAIN RATE 6.95 X 10-Ssec -I

0 0.2 0.4 . - . . i.:

GAUGE LENGTH STRAIN, percent

Fig. 4. Stress vs. gauge length strain for hot-pressed
zirconium carbide tested at 1600"C

"1-
I.-

bJ
n-
I-
U)

LLJ
J

I-

<
:i

3

I00 --
m

i.o_

o,i .._

I I I t I

o -

0 STRAIN RATE G.9_xlO "5 sec -!

STRAIN RATE 50OxlO "S sec "l

I I I l L
16 20 24

T_PERATURE T =CxtO0

Fig. 5. Ultimate tensile strength vs. temperature for

hot-pressed zirconium carbide

e

I I I I I IIII

0

o t6o0"c
v 2000"(:
0 2400"C

0 2600%

OPEN POINTS: ~:LO% FREE CARBON

~?...0% NITROGEN

SOLID POINTS; ~0.9% FREE CARBON

~02% NITROGEN

IO IOO

STRAIN RATE, sec-ixlO -5

t000

Fig. 6. Ultimate tensile strength vs. strain rate for

hot-pressed zirconium carbide

6
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100

E

0.1

I J I I1 I I I I II I J J J I

'_400 "C

It_ . %_ 2600 "C _

"_" _ 0 %%% _

1600_C o
v

0 1600°C

V 2000%

0 24oo-c
2600"C

I I Ill I I I ill I I I It
lO I00 IO00

STRAIN RATE, sec -I X I0 -5

Fig. 7. Elongation (gauge length) at fracture for

hot-pressed zirconium carbide

that deformation was in the form of intergranular crack-
ing with no change in the shape of the zirconium carbide

grains. Compare these grains with those of the as-

received material shown in Fig. 1. These microeracks lay
in the plane perpendicular to the direction of loading.

Such microcracks resulted in a decrease in density and a
reduction in load-carrying area, thus increasing the
actual stress. The stress reported was not corrected for

either apparent or true reducUon in area.

The strain hardening exhibited in the stress vs. gauge

length strain curve (see Fig. 4) taken at 1600"C was

entirely reproducible at this temperature. Specimen num-
bers 1, 5, 25, 40, and 52 (see Table 3) all exhibited this

strain hardening. In all cases the reduction in area and
the gauge length elongation were so small that no cor-

rection to true-stress vs. true-strain curves was required.
No fundamental significance has been ascribed to this

strain hardening since the nature of the deformation ex-
hibited at 1600"C has not been determined.

At temperatures above 2200"C, the material deformed

with either constant or decreasing load after reaching a

maximum load at a fraction of the total elongation (see
Fig. 3). The decreasing load was undoubtedly a result of

the crack formation shown in Fig. 8. This reduced the

effective area supporting the load beyond that reduction
produced by the external reduction of area (see Fig. 3).
The basis for this behavior will be discussed further

under creep results.

Fig. 8. Microstructure of hot-pressed zirconium carbide

after 52% gauge length strain. Specimen was polished

in left photo and polished and etched with 50 parts conc.
HNO_: 50 part= H=O: 1 part HF in right photo

The stress vs. gauge length strain curves for zirconium

carbide at temperatures above 2200"C, although exhib-

iting low ultimate stress, still represented considerable
energy for fracture. The result in Fig. 3 exhibits approxi.

mately 410 in-lb/in s for fracture while that in Fig. 4 is
approximately 99 in-lb/in _. The energy for fracture for

these tests is shown in Fig. 9. From these results, a

marked increase in energy for fracture, apparently a
result of increased ductility, is evident above 2000"C.

B. Creep Program

The creep data were obtained on the same type of
system used for tension work with the substitution of a

7
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Table 3. Tensile properties of hot-pressed zirconium carbide

Hec_d at

Specimen 2150*¢

1 hr

9 No

I No

5 Yes

52 c No

25 Yes

40 Yes

2 No

36 Yes

12 Yes

33 Yes

3 No

6 Yes

51 c No

13 Yes

39 Yes

54 c No

8-A" Yes

8-6" Yes

14 Yes

Test

temperature

1600

1600

2OOO

2OOO

2000

2000

22OO

2400

2400

24OO

24O0

2400

26OO

2600

260O

Strain

rate

"C sec -_ X 104

20 5.1

1600 6.95

1600 6.95

1600 6.95

83.5

500.

6.95

6.95

31.2

500.

6.95

6.95

6.95

31.2

500.

500.

6.95

83.5

500.

Ultimate

tensile stress

kpd

> 30?

10.55

10.58

13.09

16.00

11,70

2.38

4.496

4.28

6.94

2.48

0,82

0.85

2.20

7.35

11.04

0.03

1.00

2.69

Total

recorded

strain, %

0.0

0.82

1.16

1.4

1.41

1.09

4.45

2.73

0.55

1.07

8.50

>59.4 d

46.2

52.5

4.95

3.25

me

50.4

27.7

Reduction

in are¢l

%

0.0

0.0

_t•

0.0

0.0

3.0

0.71

1.4

0.69

0,92

>21.7

18,0

19.4

0.67

0.1

e

21.1

10.0

Decrease in

density"
%

0.00

1.39

0,86

0.37

0.91

1.15

0.0

0.52

0.25

0.12

2.0

3.84

3.13

3.07

0,52

0.83

e

5,5

2.60

• Based on entire specimen.

bSpec|men reached this value, then failed in subsequent test due to mlsallgnment.

eliot-pressed at JPL; others were vendor hot-pressed.

aSpsdmen did not fracture.

eStrain rate changed during test.

dead weight for the motor drive (Ref. 8); the same defor-

mation measurement procedures and definitions were

used. The results were plotted in the form of gauge

length strain vs. time and of log gauge length strain vs.

log time curves.

Any attempt to analyze the creep behavior of materials

soon becomes involved in a choice of which of the many

theories of creep is to be applied. Mere representation of

the experimentally determined data by a mathematical

relationship often does not yield any useful insight into

the mechanism controlling it. In fact, data on many ma-

8

terials vastly different in structure may exhibit the same

fundamental mathematical relationship. This investiga-

tion was designed to determine the creep properties of

a particular carbide rather than to evaluate various the-

ories of creep. So that these properties could most easily

be related to those of other materials, the simplest form

of creep expression, that of linear deformation vs. time,

was chosen for the bulk of the analysis. To represent the

plot by a simple mathematical expression, a linear region

must exist within the creep curve. Such a region was

found in almost all cases (see Fig. 10 for typical results);

consequently, it was assumed that such a region of creep
exists for this material.
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Fig. 9. Energy for fracture in hot-pressed
zirconium carbide
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The creep rates determined from the linear portion of
the deformation-time curves are listed in Table 4. These

creep rates are true rates and have been corrected for
changes in gauge length and stress level caused by the
reduction in cross-sectional area. The reduced load-

carrying ability caused by internal cracking was ne-

glected. An Arrhenius plot of the data is shown in Fig.

11. Here it may be seen that a change in creep process
was indicated at a temperature of approximately gl50*C.

The creep rate below 2150"C exhibited an activation

energy of approximately 75 kcal/mole, while above
2150"C the activation energy was approximately 200
kcal/mo]e. This higher level of activation energy might

be evidence of a second process, that of grain boundary
deformation, in addition to the unknown process occur-

ring at lower temperatures. The microstructure of the

material after large deformation showed no change in

0._."

0.30

0.2_

0.20

0.1. a

O.IC

0.0 a.

I I I I I I I I I I I I

- STRESS 1.50 kpsl

I 2 3 4 5 4

TIME, sec xlO _

Fig. 10. True creep vs. time for hot-pressed
zirconium carbide

TEMPERATURE T, "Cxl00

25 23 22 19 18

I
I

O 0.5 kpsi STRESS

u I.O kpsi STRESS

A 2.0 kpsi STRESS

L I I I I I
3J 4.0 4.2 4,4 4.s 4.s

I/T, sO-Ix I0 4

Fig. 11. True creep rate vs. reciprocal temperature

for hot-pressed zirconium carbide

5.0

the appearance of the grains of the zirconium carbide
accompanying the large deformation at the grain boun-

daries. Since the free carbon is located at these grain
boundaries, it is proposed that the large deformation was
a result of the effect of the impurities at the grain boun-

daries- in this case, primarily free carbon. It should be

9
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Table 4. Linear true creep rate for zirconium carbide

at various temperatures and stresses

sa,_m

42

24

22

30.1,

44

45-A

18-A

45-|

18-6

_5-C

31.A

34-A

23-A

31-B

34-B

23-8

17

32

19

Temperatwe

"C

1800

1800

1800

1900

1900

2O0O

2OOO

2100

2100

2150

2200

22OO

220O

2300

2300

2300

248O

25OO

26OO

Loml

h,d

Uneer creep rate*

2.00

4.50

5.00

2,00

2.00

1.00

2.00

!.00

2.00

1.00

O.50

1.00

1.50

0.50

1.0Q

1.50

0.50

0.50

i_c -1 × 10 "_

0.0387

0.410

O.46O

0.0971

0.102

0.0481

1.5

0.110

O.298

0.163

0.0278

0.403

1.80

0.170

1.28

3.88

0.55

O.33

0.98

0.51

0.54

O.74

0.73

0.74

0.96

0.72

0.65

0.79

0.77

0.78

1.04

0.95

0.75

0.79

1.100.37

• Slope of IInem_portlae of hue creep vs. time curve.

bparameters of E =z 80 '4" bta.

0.75

3.65

35.8

Exponential creep

equation parameters b

0.092

0.13

0.04

0.10

0.072

0.033

0.10

0.034

0.04

0.040

0.17

0.14

0.54

0,06

0.10

0.48

0.70

1.10

0.25

noted that the activation energies of creep determined in

this investigation for zirconium carbide agreed with the

range of values reported for graphite (Ref. 9); however,

the magnitude of the deformation in the zirconium ear-

bide at any temperature was considerably greater than

that reported for graphite at the corresponding tem-

perature.

The role of the nitrogen and oxygen in the creep

behavior of zirconium carbide was not clear. It has been

reported s that oxygen has a marked effect on the lattice

parameter of zirconium carbide, but whether such an

effect of oxygen exists in the deformation mechanisms

cannot be reported at this time. It was not possible to

obtain material free of these impurities, nor were there

10

adequate methods for determining the quantit'/of such

impurities.

The clear differentiation between the effects of the

carbon and the effects of the other impurities was not

possible from these data. However, it is believed that

the high creep rates and low strengths exhibited at tem-

peratures above 2150"C are related primarily to the

presence of carbon at the grain boundaries rather than

other contaminants. The oxygen and nitrogen are soluble

in the zirconium carbide lattice and thus would not con-

tribute so strongly to grain boundary mobility. Such

'Private communication with Melvin C. Bowman.
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solubility is not known to exist for e.arbon beyond the
stoichiometric amount (Ref. 10).

The apparent marked dependence of these results on

the presence of impurities, in this case carbon, at the

grain boundary could be verified by studying materials
without this impurity. Toward this end, some samples

of zirconium carbide were hot-pressed at JPL under

conditions designed to prevent the solution of nitrogen

and the precipitation of carbon. Although this was
accomplished, the improved specimens slSll contained

approximately 0.8% free carbon, this amount having

been present in the starting material. Tests were con-
ducted on material of this composition, and the results

are shown in Fig. 6. A small increase in strength of ques-

tionable significance is evident. Reduction of the free
carbon to far lower amounts would appear to be neces-

sary. Specimens exhibiting no free carbon have not yet
been obtained for testing.

The effect of stress level on linear creep rate is shown

in Fig. 12. This creep rate was found to vary with ap-

proximately the third power of the stress, and no sig-
nificant change in the power term seems to occur at
2150"C. However, a vast number of materials exhibit

stress dependence of creep of approximately this mag-
nitude, and it may well be that the creep mechanisms

10°4

"_ i0-5

n,

0

hi

10_4

i0 -?

0,1

I I I I I I I I II I

2300"C

2200"C

1800"C

I I I II I I I II I i
I I0

STRESS, kpsi

Fig. 12. True creep rate vs. stress for hot-pressed
zirconium carbide

I I I_

existing both above and below 2150"C have approxi-
mately this same dependency.

An attempt was made to apply an exponential creep

equation of the form

• :eo+bt"

where

• = total strain

eo : elastic strain

t= Ume

and

b, n : constants

Some sample plots are shown in Fig. 13, and the values

obtained for the parameters of this equation are sum-
marized in Table 4. In all cases, eo was approximately
zero. However, no correlation of the other parameters of

the equation with conditions in the test could be made.

L0 ! I I I I I I
l

I 037 kpsi --_ v

I AND _ "Y' Y

2_"C

0.1
Z

o.oo_1 I - I ,I ,,o I I l
O. I 0.3 1.0 3.0 I0,0 30.0

TIME, secx IO 3

Fig. 13. Recorded strain vs. time for hot-pressed
zirconium carbide

C. ,Modulus of Elasticity

The strain sensitivity of the equipment used for these

tension and creep studies was not sufficiently great to

11
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permit measurements of modulus of elasticity. However,
dynamic techniques were used for measurements at room

temperature. The data were obtained using Magnetest

Elastomat Type FM-500. The specimen was supported at
the nodes by wires, and the excitation and detection of

response was by means of wires touching the end of the
specimen. Modulus-of-elasticity values obtained were

52.0 +__0.2 X 10_ psi for the zirconium carbide in the
as-received condition. For material that had been heat-

treated for 1 hr at 2150"C in a carbonaceous atmosphere

furnace, the value was 51.2 ± 0.2 X l0 s psi. These
values were the averages of results for transverse and
longitudinal modes of vibration and were corrected for

specimen shapes.

During these determinations of thermal expansion, a

peculiar phenomenon was noted at about 2750"C: in

three independent tests, the zirconium carbide specimen
under study underwent catastrophic fracture, causing the

specimen to fly into several small pieces. It is believed
that this phenomenon was a result of the combination of

the oxygen impurity with either free carbon or carbon
from the carbide lattice to form carbon monoxide. The

temperature at which this occurred (2750"C) is reported

to be the eutectic temperature for zirconium carbide-

carbon. _ It would thus seem that the oxygen reacted
with the eutectic melt; however, no indication of melting
was noted.

"Privatecommunication with Melvin G. Bowman.

D. Coefficient of Thermal Expansion

Measurements of the coefficient of thermal expansion

were made on zirconium carbide from room temperature _ '_o
to 2800"C. Measurements from room temperature to _. -x

or_
1000"C were made in an automatic recording fused-silica- _ _.

tube dilatometer under argon. Measurements from 1000 _
to 2800"C were made by observing the displacement of ,7
the ends of the specimens by means of a friar telernicro- _
scope. The high-temperature tests were conducted in a z

¢[

carbonaceous argon atmosphere. These results indicated '.'
no unusual behavior for thermal expansion up to 2400°C;

however, at this temperature, scatter in the data became

unreasonably large, and so the data are not reported.
Whether this scatter was a result of some phenomena in
the material or merely an unidentified contribution of the

experimental setup is not known. The data are shown in
Fig. 14.

_o I I I I I 1 I I t

B 12 16

TEMPERATURE _sCxlO0

I
2O

I

Fig. 14. Mean coefficient of thermal expansion from
25°C to the temperature indicated for zirconium carbide

hot-pressed by vendor and heat-treated to 2150"C in
carbonaceous argon

12
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IV. CONCLUSIONS

From the data presented here it is proposed that the
mechanical properties of zirconium carbide at high tem-

peratures are controlled by the presence of impurities.
This, of course, is quite common in materials. These

results re-emphasize the necessity for complete charac-

terization of a material before representation of its prop-
erties becomes meaningful. For the zirconium carbide

used in this study, the principal contaminant appeared
to be free carbon; however, the possibility that the pres-

ence of nitrogen and oxygen severely affected the me-
chanical properties measured cannot be overlooked.

Because the properties under study appear to depend

so markedly on the impurities, additional analysis of this

material would not seem valuable. The engineering data
obtained are useful only for material of this particular

level of impurity, while fundamental data require better
control and knowledge of the qualitative and quantita-

tive impuri b, level. The data that were obtained showed

ultimate tensile strengths as low as 100 psi at 2600"C.

Up to 2000"C, strength remains at least 2500 psi. Gauge
length elongation ranged from 1% at 1600"C to 50% at

_0*C. The appearance of such large elongation in this

material is apparently a new finding. The ultimate ten-

sile strength increased quite rapidly with strain rate at
temperatures above 20(X)°C, whereas strain rate had

only slight effect below 20(O'C.

The activation energy for creep in this hot-pressed
zirconium carbide was approximately 75 kcal/mole
below 2150"C and 200 keal/mole above 2150*C. It is

proposed that the higher value is related to the presence

of impurities, principally free carbon, at the grain boun-
daries. The creep rate was proportional to approxi-

mately the third power of the applied stress.

Dynamic modulus of elasticity at room temperature

was found to be 52.0 ----_0.2 X l0 s psi for as-received
zirconium carbide and 513, ± 0.6 X l(P psi for zir-
conium carbide that had been heated for 1 hr at 2150*C

in a carbonaceous argon atmosphere furnace. The mean

coefficient of thermal expansion was found to vary from

5.6 x 10 -6 "C -x (for 25 to 400"C) to 7.6 X 10 -6 "C -a
(for 25 to 2,300" F).

13
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